

Econ.	<u>Prob.</u>	<u>T-Bill</u>	<u>Alta</u>	<u>Repo</u>	<u>Am F.</u>	<u>MP</u>
Bust	0.10	8.0%	-22.0%	28.0%	10.0%	-13.0%
Below avg.	0.20	8.0	-2.0	14.7	-10.0	1.0
Avg.	0.40	8.0	20.0	0.0	7.0	15.0
Above avg.	0.20	8.0	35.0	-10.0	45.0	29.0
Boom	<u>0.10</u>	8.0	50.0	-20.0	30.0	43.0
	1.00					

What is unique about the Tbill return?

- The T-bill will return 8% regardless of the state of the economy.
- Is the T-bill riskless? Explain.

Alta Inds. and Repo Men vs. the Economy

- Alta Inds. moves with the economy, so it is positively correlated with the economy. This is the typical situation.
- Repo Men moves counter to the economy. Such negative correlation is unusual.

Calculate the expected rate of return on each alternative.

 \hat{r} = expected rate of return.

$$\hat{r} = \sum_{i=1}^{n} r_i P_i.$$

$$\hat{r}_{Alta} = 0.10(-22\%) + 0.20(-2\%) + 0.40(20\%) + 0.20(35\%) + 0.10(50\%) = 17.4\%.$$

Alta has the highest rate of return. Does that make it best?

	^
	r
Alta	17.4%
Market	15.0
Am. Foam	13.8
T-bill	8.0
Repo Men	1.7

9

Expected Return versus Risk

Security	Expected Return	Risk, σ
Alta Inds.	17.4%	20.0%
Market	15.0	15.3
Am. Foam	13.8	18.8
T-bills	8.0	0.0
Repo Men	1.7	13.4

Coefficient of Variation (CV)

- CV = Standard deviation / Expected return
- CVT-BILLS = 0.0% / 8.0% = 0.0.
- CVAlta Inds = 20.0% / 17.4% = 1.1.
- CVRepo Men = 13.4% / 1.7% = 7.9.
- CVAm. Foam = 18.8% / 13.8% = 1.4.
- CVM = 15.3% / 15.0% = 1.0.

Expected Return versus Coefficient of Variation

Security	Expected Return	Risk: σ	Risk: CV
Alta Inds	17.4%	20.0%	1.1
Market	15.0	15.3	1.0
Am. Foam	13.8	18.8	1.4
T-bills	8.0	0.0	0.0
Repo Men	1.7	13.4	7.9

Return vs. Risk (Std. Dev.): Which investment is best?

17

$\sigma_p = ((3.0 - 9.6)^2 0.10 + (6.4 - 9.6)^2 0.20)$			
$+(10.0 - 9.6)^2 0.40 + (12.5 - 9.6)^2 0.20$			
+ $(15.0 - 9.6)^2 (0.10)^{1/2} = 3.3\%$			
$CV_{p} = 3.3\%/9.6\% = .34$			

10.0

12.5

15.0

avg.

avg.

Boom

Average Above 0.40

0.20

0.10

20.0

35.0

50.0

0.0

-10.0

-20.0

Portfolio vs. Its Components

- Portfolio expected return (9.6%) is between Alta (17.4%) and Repo (1.7%) returns.
- Portfolio standard deviation is much lower than:
 - either stock (20% and 13.4%).
 - average of Alta and Repo (16.7%).
- The reason is due to negative correlation (ρ) between Alta and Repo returns.

Two-Stock Portfolios

- Two stocks can be combined to form a riskless portfolio if $\rho = -1.0$.
- Risk is not reduced at all if the two stocks have $\rho = +1.0$.
- In general, stocks have $\rho \approx 0.35$, so risk is lowered but not eliminated.
- Investors typically hold many stocks.
- What happens when $\rho = 0$?

Adding Stocks to a Portfolio

- What would happen to the risk of an average 1-stock portfolio as more randomly selected stocks were added?
- σ_p would decrease because the added stocks would not be perfectly correlated, but the expected portfolio return would remain relatively constant.

25

Conclusions

- As more stocks are added, each new stock has a smaller risk-reducing impact on the portfolio.
- σ_p falls very slowly after about 40 stocks are included. The lower limit for σ_{p} is about 20% $= \sigma_{M}$.
- By forming well-diversified portfolios, investors can eliminate about half the risk of owning a single stock.

Can an investor holding one stock earn a return commensurate with its risk?

- No. Rational investors will minimize risk by holding portfolios.
- They bear only market risk, so prices and returns reflect this lower risk.
- The one-stock investor bears higher (stand-alone) risk, so the return is less than that required by the risk.

How is market risk measured for individual securities?

- Market risk, which is relevant for stocks held in well-diversified portfolios, is defined as the contribution of a security to the overall riskiness of the portfolio.
- It is measured by a stock's beta coefficient. For stock i, its beta is:

•
$$b_i = (\rho_{i,M} \sigma_i) / \sigma_M$$

How are betas calculated?

 In addition to measuring a stock's contribution of risk to a portfolio, beta also measures the stock's volatility relative to the market.

Using a Regression to Estimate Beta

- Run a regression with returns on the stock in question plotted on the Y axis and returns on the market portfolio plotted on the X axis.
- The slope of the regression line, which measures relative volatility, is defined as the stock's beta coefficient, or b.

Use the historical stock returns to calculate the beta for PQU.

Year	<u>Market</u>	<u>PQU</u>
1	25.7%	40.0%
2	8.0%	-15.0%
3	-11.0%	-15.0%
4	15.0%	35.0%
5	32.5%	10.0%
6	13.7%	30.0%
7	40.0%	42.0%
8	10.0%	-10.0%
9	-10.8%	-25.0%
10	-13.1%	25.0%

33

- of monthly returns to establish the regression line.
- Some analysts use 52 weeks of weekly returns.

- If b < 1.0, stock is less risky than average.
- Most stocks have betas in the range of 0.5 to 1.5.
- Can a stock have a negative beta?

Other Web Sites for Beta

- Go to http://finance.yahoo.com
- Enter the ticker symbol for a "Stock Quote", such as IBM or Dell, then click GO.
- When the quote comes up, select Key Statistics from panel on left.

41

Expected Return versus Market Risk: Which investment is best?

Security	Expected Return (%)	Risk, b
Alta	17.4	1.29
Market	15.0	1.00
Am. Foam	13.8	0.68
T-bills	8.0	0.00
Repo Men	1.7	-0.86

Use the SML to calculate each alternative's required return.

- The Security Market Line (SML) is part of the Capital Asset Pricing Model (CAPM).
- SML: $r_i = r_{RF} + (RP_M)b_i$.
- Assume $r_{RF} = 8\%$; $r_{M} = r_{M} = 15\%$.
- $RP_M = (r_M r_{RF}) = 15\% 8\% = 7\%$.

Required Rates of Return

• $r_{Alta} = 8.0\% + (7\%)(1.29) = 17\%.$ • $r_{M} = 8.0\% + (7\%)(1.00) = 15.0\%.$ • $r_{Am. F.} = 8.0\% + (7\%)(0.68) = 12.8\%.$ • $r_{T-bill} = 8.0\% + (7\%)(0.00) = 8.0\%.$ • $r_{Repo} = 8.0\% + (7\%)(-0.86) = 2.0\%.$

Expected versus Required Returns (%)

	Exp.	Req.	
	r	r	
Alta	17.4	17.0	Undervalued
Market	15.0	15.0	Fairly valued
Am. Foam	13.8	12.8	Undervalued
T-bills	8.0	8.0	Fairly valued
Repo	1.7	2.0	Overvalued

Calculate beta for a portfolio with 50% Alta and 50% Repo

$$p_p$$
 = Weighted average
= 0.5(b_{Alta}) + 0.5(b_{Repo})
= 0.5(1.29) + 0.5(-0.86)
= 0.22.

Required Return on the Alta/Repo Portfolio?

 r_p = Weighted average r = 0.5(17%) + 0.5(2%) = 9.5%.

Or use SML:

$$r_p = r_{RF} + (RP_M) b_p$$

= 8.0% + 7%(0.22) = 9.5%.