

การประชุมวิชาการ "ศาสตราจารย์สังเวียน อินทรวิชัย ด้านตลาดการเงินไทย" ครั้งที่ 24 ประจำปี 2559

การบรรยายเรื่อง

"Autoregressive Regressions for Contrarian and Trend-Chasing Strategies"

ผู้บรรยาย ผศ.ดร.สุลักษมณ์ ภัทรธรรมมาศ

วันศุกร์ที่ 25 พฤศจิกายน 2559 เวลา 13:15 - 14:45 น. ห้อง 207 คณะพาณิชยศาสตร์และการบัญชี มหาวิทยาลัยธรรมศาสตร์ ท่าพระจันทร์

Autoregressive Regressions for Contrarian and Trend-Chasing Strategies

Suluck Pattarathammas, D.B.A. (Finance), Assistant Professor of Finance
Thammasat Business School
November 25, 2016

Topics

- Contrarian Strategies
- Trend-Chasing Strategies
- Autoregressive (AR) Model
- · Application using AR Model
- Limitations and Notes
- Extension

Contrarian Strategies

- From Chan (1988), contrarian strategy is by going long in stocks in period n that have performed relatively poorly (loser stocks) in period (n-1), and by short-selling stocks in period n that have performed relatively well (winner stocks) in period (n-1).
- Possible explanations:
 - Overreaction Hypothesis (De Bondt and Thaler, 1985)
 - Seasonality effects, e.g. January effects, Chinese New Year effects
 - Size effects
 - Lead-lag explanations among stocks, e.g. some stocks react to information more quickly than others.
 - Changes in risk biases
 Asst.Prof.Suluck Pattarathammas,
 DBA (Finance)

3

Contrarian Strategies

- Value investing
 - Buying stocks that have low prices relative to earnings, dividends, book assets, or other measures of fundamental value.
 - These strategies are contrarian to "naive" strategies followed by other investors.

Winning and Losing Portfolios

- Use / periods data of returns (average/excess) for ranking stocks.
 - For example, 12 months, 24 months, 36 months etc.
 - Intraday data was also used.
- Select m number of stocks to form s portfolios from low to high ranking.
 - The lowest ranking portfolio is called "losing portfolio"
 - The highest ranking portfolio is called "winning portfolio"
- Then hold the losing portfolio and short the winning portfolio for *k* periods.

Asst.Prof.Suluck Pattarathammas, DBA (Finance)

5

Empirical Results

- Results are mixed.
- Empirical results seems to be highly dependent on
 - variations in methodology,
 - meaning length of ranking and holding periods,
 - market of interest,
 - choice of pricing models and assumptions

Extension to other Asset Classes

- Mutual funds
- Foreign exchange rate

Asst.Prof.Suluck Pattarathammas, DBA (Finance)

7

THAM MASAT BUSINESS SCHOOL

Trend-Chasing Strategies

- Momentum strategies/ positive feedback strategies
- Buying (selling) when the stock price is rising (falling) and the market for the stock has excess buyers (sellers).
- Possible explanations:
 - "Disposition effect" when investors hold losing stocks too long and sell winning stocks too quickly.
 - Trends will occur if information is used imperfectly. This can occur if enough people are irrational or rational but unable to interpret all information guickly and correctly.
 - The manifestation of the trade behavior of market participants who condition trades on prior price movements.
 - Feedback takes place because past price changes generate expectations of further price changes. This explanation relies on adaptive expectations.

Winning and Losing Portfolios

 Hold the winning portfolio and short the losing portfolio for k periods.

Asst.Prof.Suluck Pattarathammas, DBA (Finance)

9

Autoregressive Regressions (AR)

- Values of a series of financial data at particular points in time might be highly correlated with the value which precede and succeed them.
- AR (p) Model:

$$y_t = b_0 + \sum_{i=1}^{p} b_i y_{t-i} + e_t$$

• AR (1) Model:

$$y_{t} = b_{0} + b_{1}y_{t-1} + e_{t}$$

- It can be used for forecasting.
 - It can also conditional on GARCH family model.

Application using AR Model

$$r_t = b_0 + b_1 r_{t-1} + \epsilon_t$$

- If b₁ > 0, use trend chasing strategy
- If $b_1 < 0$, use contrarian strategy

Asst.Prof.Suluck Pattarathammas, DBA (Finance)

11

THAM MASAT BUSINESS SCHOOL

Limitations and Notes

- Use different ranking and holding periods.
- If the b₁ is very small, will the suggested strategy be profitable?
- Will this trend continue in the future?

More Sophisticated Extension

Price trend model by Kahra and Schadewitzy (2005)

We follow Taylor [11] and assume that returns X_t have stationary mean μ such that

$$X_t = \mu + (\mu_t - \mu) + e_t. (3)$$

In the return process e_t is the response to quickly reflected information and $\mu_t - \mu$ is the response to slowly reflected information. By definition e_t is a zero mean uncorrelated irregular component, the error or disturbance. The μ_t have mean μ and they are autocorrelated such that $\{\mu_t\}$ is an AR(1) process

$$\mu_t - \mu = p(\mu_{t-1} - \mu) + \zeta_t \tag{4}$$

having autocorrelations p^{τ} . The error term ζ_t represents the effect of all the slowly reflected news first available on day t.

Use Maximum Likelihood to estimate.

Asst.Prof.Suluck Pattarathammas, DBA (Finance)

13

References

- Chan, K. C.,1988, On the Contrarian Investment Strategy, *Journal of Business*, 147-163.
- De Bondt, W. F. M. and R. Thaler, 1985, Does the Stock Market Overreact? *Journal of Finance*, 793-805.
- Farmer, J.D. and S. Joshi, 2002, The Price Dynamics of Common Trading Strategies, *Journal of Economic Behavior & Organization*, 149–171.
- Kahra, H. A. and H. J. Schadewitzy, 2005, Chasing Trends down Wall Street, working paper.
- Keim, D. B., 2003, The Cost of Trend Chasing and The Illusion of Momentum Profits, working paper.
- Lakonishok, J., A. Shleifer and R. W. Vishny, 1994, Contrarian Investment, Extrapolation, and Risk, *Journal of Finance*, 1541-1578.